

$M\alpha$ thematics

National 5 Practice Paper A

Paper 1

Duration - 1 hour

Total marks - 40

- You may NOT use a calculator
- Attempt all the questions.
- Use blue or black ink.
- Full credit will only be given to solutions which contain appropriate working.
- State the units for your answer where appropriate.

FORMULAE LIST

The roots of are
$$ax^2 + bx + c = 0 \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

Area of a triangle:
$$A = \frac{1}{2}ab \sin C$$

Volume of a Sphere:
$$V = \frac{4}{3}\pi r^3$$

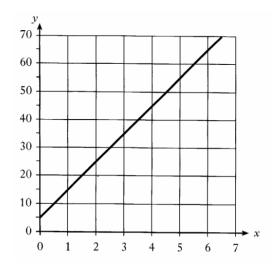
Volume of a cone:
$$V = \frac{1}{3}\pi r^2 h$$

Volume of a pyramid:
$$V = \frac{1}{3}Ah$$

Standard deviation:
$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2/n}{n-1}}$$
, where n is the sample size.

1. Evaluate

$$3\frac{2}{5} - 1\frac{3}{4}$$


2

2. Factorise

$$x^2 + 2x - 15$$
.

2

3.

Find the equation of this straight line in the form y = mx + c

3

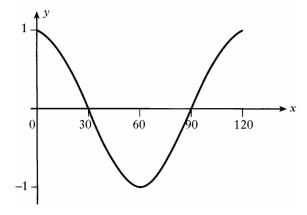
4. Express $y = x^2 + 8x - 7$ in the form $y = (x + a)^2 + b$ and hence state the coordinates of the turning point.

3

5.

$$P = R^3b - 5$$

Change the subject of the formula to R.


- 6. Two vectors are defined as $\mathbf{u} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$.
 - (a) Find the resultant vector $\mathbf{u} + 3\mathbf{v}$.

1

(b) Find |u + 3v|.

2

7.

Part of the graph of $y = \cos bx^{\circ}$ is shown in the diagram.

State the value of b.

1

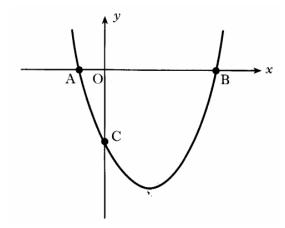
8. Find the point of intersection of the straight lines with equations

$$2x + y = 5$$
 and $x - 3y = 6$.

4

9. A parabola has equation $y = x^2 - 3x + 7$.

Using the discriminant, determine the nature of its roots.


10. A straight line has the equation 3x - y = 9.

A second line is parallel to this and passes throught the point (5, -3).

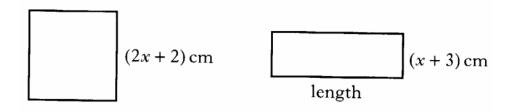
Write down the equation of the second line.

3

11.

The equation of the parabola in the diagram above is $y = (x-2)^2 - 9$.

(a) State the coordinates of the minimum turning point of the parabola.


2

(b) Find the coordinates of C.

2

(c) A is the point (-1,0). State the coordinates of B.

12. The square and rectangle shown below have the same perimeter.

Show that the length of the rectangle is (3x + 1) centimetres.

2

- 13. (a) Express $\frac{3}{x} \frac{5}{x+2}$, $x \ne 0$, $x \ne 2$, as a single fraction in its simplest form.

3

(b) Express $\sqrt{18} - \sqrt{2} + \sqrt{72}$ as a surd in its simplest form.

[End of question paper]

$M\alpha$ thematics

National 5 Practice Paper A

Paper 2

Duration - 1 hour and 30 minutes

Total marks - 50

- You may use a calculator
- Attempt all the questions.
- Use blue or black ink.
- Full credit will only be given to solutions which contain appropriate working.
- State the units for your answer where appropriate.

1. The population of a city is increasing at a steady rate of 2.4% per annum. The current population is 528 000.

What is the expected population in 4 years?

Give your answer to the nearest thousand.

3

- 2. Two groups of 6 students are given the same test.
 - (a) The marks of Group A are:

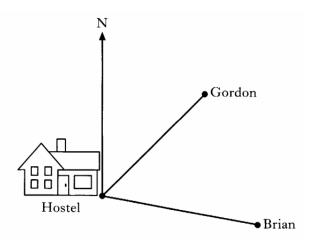
73 47 59 71 48 62.

Use an appropriate formula to calculate the mean and the standard deviation.

Show clearly all your working.

4

(b) In Group B, the mean is 60 and the standard deviation is 29.8.


Compare the results of the two groups.

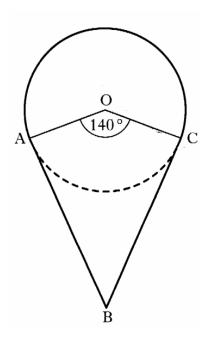
2

3. Multiply out the brackets and collect like terms.

$$(x+4)(2x^2+3x-1)$$

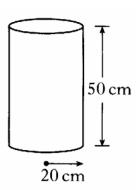
Gordon and Brian leave a hostel at the same time.
 Gordon walks on a bearing of 045° at a speed of 4.4 kilometres per hour.
 Brian walks on a bearing of 100° at a speed of 4.8 kilometres per hour.

If they both walk at stead speeds, how far apart will they be after 2 hours?

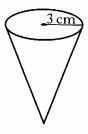

5

5. The diagram shows a mirror which has been designed for a new hotel.

The shape consists of a sector of a circle and a kite AOCB.

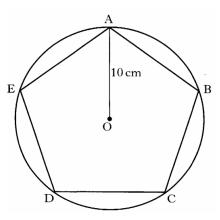

- The circle, centre 0, has a radius of 50 centimetres.
- \circ Angle AOC = 140°
- AB and CB are tangents to the circle at A and C respectively.

Find the perimeter of the mirror.


5

- 6. A drinks container is in the shape of a cylinder with radius 20 centimetres and height 50 centimetres.
 - (a) Calculate the volume of the drinks container.Give your answer in cubic centimetres, correct to two significant figures.

3


(b) Liquid from the full container can fill 800 cups, in the shape of cones, each of radius 3 centimetres.

What will be the height of liquid in each cup?

4

7.

A regular pentagon ABCDE is drawn in a circle, centre 0, with radius 10 centimetres.

Calculate the area of the regular pentagon.

8. (a) Express $a^2 \left(2a^{-\frac{1}{2}} + a\right)$ in its simplest form.

2

(b) Use an appropriate formula to solve the quadratic equation

$$3x^2 + 3x - 7 = 0.$$

Give your answers correct to 1 decimal place.

4

9. (a) Solve the equation

$$4 \tan x^{\circ} + 5 = 0, \quad 0 \le x \le 360.$$

3

(b) Show that

$$\tan x \cos x = \sin x$$
.

10. A rectangular wall vent is 30 centimetres long and 10 centimetres wide.

It is to be enlarged by increasing both the length and the width by x centimetres.

(a) Show that the area, A square centimetres, of the new vent is given by $A = x^2 + 40x + 300.$

The area of the new vent must be at least 75% more than the original area.

(b) Find the minimum dimensions of the new vent.

5

[End of question paper]